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Abstract—Large-scale high-performance computing (HPC)
systems consist of massive compute and memory resources tightly
coupled in nodes. We perform a large-scale study of memory
utilization on four production HPC clusters. Our results show
that more than 90% of jobs utilize less than 15% of the
node memory capacity, and for 90% of the time, memory
utilization is less than 35%. Recently, disaggregated architecture
is gaining traction because it can selectively scale up a resource
and improve resource utilization. Based on these observations,
we explore using disaggregated memory to support memory-
intensive applications, while most jobs remain intact on HPC
systems with reduced node memory. We designed and developed a
user-space remote-memory paging library to enable applications
exploring disaggregated memory on existing HPC clusters. We
quantified the impact of access patterns and network connectiv-
ity in benchmarks. Our case studies of graph-processing and
Monte-Carlo applications evaluated the impact of application
characteristics and local memory capacity and highlighted the
potential of throughput scaling on disaggregated memory.

Index Terms—Disaggregated Memory, Memory Utilization,
Remote Paging, Remote Memory

I. INTRODUCTION

Compute nodes are the basic unit of today’s HPC systems.
Compute and memory resources are tightly coupled in each
node, and users request resources in the unit of a node.
However, in the past two decades, processor and memory
technologies are advancing at a diverging rate. The transistor
speed doubled every 18 months before the Dennard scaling
ended, and the number of transistors continues increasing.
In contrast, memory latency nearly stagnates, and DRAM
technology has dominated for decades. Nevertheless, on tightly
coupled architecture, these two resources need to be upgraded
together. Recently, disaggregate architecture starts shifting
the paradigm of resource deployment and allocation in data
centers and clouds [1]–[4]. Different resources can be up-
graded independently on a disaggregated system, and users
can request resources at a fine granularity.

Disaggregated memory systems, such as network-attached
memory, are one popular disaggregated architecture [3], [5]–
[7]. Memory resources are shared among jobs at the rack-
or system-level. Therefore, overall memory utilization on the
system improves while individual jobs’ performance may
degrade with increased memory accesses over the network.
Previous studies mostly focused on data center infrastructure
and workloads. In this study, we consider HPC environments
and aim to answer the following questions: Can disaggregate
memory benefit HPC systems? How to support existing ap-

plications to leverage disaggregate memory? What application
characteristics are critical for performance?

We performed a large-scale study to understand how exiting
workloads on production HPC systems utilize the memory
resources. For this, we analyzed more than two million jobs on
four HPC clusters. Our results show that most jobs only utilize
a small fraction of memory resources, and for more than 90%
time, a node utilizes less than 35% memory capacity. One
possible implementation of disaggregated memory systems is
as a part of a cluster, where nodes have slim memory to satisfy
most jobs while memory-intensive jobs can still have sufficient
memory resources from memory attached to the network.

HPC applications and environments impose constraints
different from data centers, e.g., node sharing among jobs
and kernel modifications in jobs are rare. In this work, we
provide a user-space library to enable existing applications
to explore disaggregated memory resources on HPC systems.
The users have the flexibility of selecting data objects that
may be partially placed on the remote memory to study the
impact on performance. Transparently, the runtime manages
data migration to fetch and evict memory pages from memory
servers. We emulated a disaggregated memory system on an
HPC cluster and studied performance-critical characteristics,
including access patterns, local/remote memory ratios, and
network connectivity.

We summarize our contributions as follows.

• We performed a large-scale survey on four production
HPC clusters to quantify memory underutilization on
existing HPC systems;

• We investigated constraints and potential deployment
models of disaggregated memory on HPC systems

• We designed and developed a user-space solution for
applications to explore disaggregated memory on existing
HPC systems

• We emulated a disaggregated memory system and per-
formed sensitivity studies on access patterns, migration
granularity, and network connectivity

• We case studied two memory-intensive applications to
evaluate the potential of throughput scaling on disaggre-
gate memory

II. MEMORY UTILIZATION ON HPC SYSTEMS

We perform a large-scale study to understand the memory
utilization on existing HPC systems. We select four production



TABLE I: Evaluated HPC Clusters

Name Processor CPU GPU Memory Network Nodes OOM

Quartz Intel Xeon E5-2695 36 N.A 128 GB IB QDR 2604 5.4
Catalyst Intel Xeon E5-2695 v2 24 N.A 128 GB IB QDR 324 5.3
Pascal Intel Xeon E5-2695 v4 36 2 Tesla P100 256 GB IB EDR 163 14.8

Surface Intel Xeon E5-2670 16 2 Tesla K40 512 GB IB FDR 158 14.4

clusters at Lawrence Livermore National Laboratory and per-
form analysis on over two million job records. The selected
clusters feature different memory systems – The number of
nodes ranges from 163 to 2604; Two systems are equipped
with GPU accelerators; Memory resources range from 128 GB
to 512 GB per node. All the clusters use the slurm workload
manager for job scheduling. Table I summarizes the main con-
figurations of these clusters. We combine job-level information
and system-wide counter samples to quantify the memory
utilization on these clusters.

A. Workload Memory Utilization

The first characterization of memory utilization uses the
job-level resource usage captured in the slurm database. We
process three-month job records. Each record captures various
resource usage, such as memory, I/O, and network, for the job.
For this study, we mainly use six fields of the job information,
i.e., the number of nodes, the maximum and average virtual
memory, the maximum and average resident set size, and the
number of tasks, for the quantitative study. Depending on the
application executed in a job, we categorize jobs into three
categories, i.e., scientific simulations (SIM), machine learning
(ML), and data analytics and visualization (DA). Our analysis
shows that the majority (99%) of high-memory-usage jobs
(the top 1% memory usage) on these clusters are running
scientific simulations. Therefore, these clusters are traditional
HPC systems. Note that a machine-learning or data analytics
dominated cluster is likely to exhibit different behavior in
memory utilization.

We quantify the number of jobs that are limited by the
node memory capacity on these HPC clusters to understand
whether memory is a over-provisioned or scarce resource
on exiting systems. We identify these jobs from the out-
of-memory (OOM) exit code captured in the logs. For the
comparison across clusters, we normalize the number of OOM
jobs in every 10,000 jobs and report the OOM rate for each
cluster in Table I. The results show that only a small fraction
of jobs, i.e., 0.05% to 0.14%, cannot fit in the memory on
these HPC clusters. Note that the low OOM rate could be a
result of users adapting their jobs to the hardware configuration
on each cluster. We also note that many jobs have a high
aggregate memory footprint on all allocated nodes, but low
memory consumption on a single node. Since the primary
incentive for users is to shorten time to solution, jobs of good
scalability are distributed over a large number of nodes to
accelerate execution, resulting in low memory utilization per
node.

We quantify memory utilization per node in jobs to un-
derstand the requirement of memory capacity from the jobs
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Fig. 1: The distribution of job memory utilization on four HPC
clusters.
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Fig. 2: The distribution of memory imbalance in jobs on four
HPC clusters.

running on today’s HPC clusters. Each job launches Nt

parallel tasks on Nn compute nodes. We use the maximum
resident set size in the Nt tasks to estimate the size mapped
into the physical memory. Eq. 1 calculates the approximated
memory utilization per node for a single job i.

Utilmem
i =

Srss ∗Nt

Nn ∗ Smem
, (1)

where Smem is the node memory capacity. Based on the
memory utilization of all jobs, we analyze the distribution
of Utilmem

i among all jobs on four clusters, respectively.
Figure 1 reports the histogram of job memory utilization.
Three clusters, catalyst, pascal, and surface, have smaller
memory utilization compared to the Quartz cluster. Despite
surface and pascal have the largest memory capacity, their
memory utilization is similar to other clusters. One reason for
the low utilization on the two GPU-accelerated clusters could
be that users partition input problems over multiple nodes to fit
in the GPU memory per node. Quartz has a significantly larger
fraction of jobs using more memory than the other clusters.
Still, 92% jobs on Quartz uses less than 15% of the memory
capacity.

We quantify the memory imbalance among nodes in a job
to understand how much memory resource is overprovisioned
due to the peak estimation. Eq. 2 evaluates the memory
imbalance by normalizing the highest memory utilization with
the average memory utilization for a job i.

Imbmem
i =

maxSrss

Srss

(2)

We summarize the distribution of memory imbalance in all
jobs in Figure 1. Note that Imbmem

i = 1 means the memory
utilization is well balanced among all nodes. We find that
the Quartz cluster has more memory imbalanced jobs than
the other clusters, i.e., 20% jobs on Quartz has 2-8 times
memory imbalance. Note that on HPC systems, the memory
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Fig. 3: System-wide memory utilization on the Quartz cluster
for a six month period.

resources are requested in the unit of a node. A job with a high
memory imbalance among nodes will have memory resources
underutilized on most nodes.

B. System-wide Memory Utilization

Our second characterization focuses on node-level memory
utilization. This analysis quantifies the system-wide memory
utilization on each node to understand how compute nodes
utilize memory resources over time across various jobs. We
leverage the LDMS monitoring tool [8] that collects per-
formance counters periodically on each node on the Quartz
cluster and saves to a Cassandra database. We use the samples
collected in one year span. From the meminfo and memfree
counters, we quantify the total memory in use, including both
user-space and OS memory usage on a node [9]. In T sampling
periods, the average memory utilization is calculated by Eq. 3.

Imbmem
i =

∑i=T
i=1 (MemTotal −MemFree)∑i=T

i=1 MemTotal
(3)

Figure 3 reports the histogram and the cumulative distribu-
tion function (CDF) of the hourly memory utilization. Most
of the time, i.e., 40% of the evaluated period, the hourly
utilization is between 5-10% as indicated by the second bar
in Figure 3. For 90% of the time, the memory utilization is
below 35%, as indicated by the CDF line in Figure 3. The 90-
percentile is consistent with a previous study on other HPC
systems [9]. Memory underutilization is common on HPC
systems because users are driven by the time to solution, and
job allocation is based on the peak usage, i.e., the maximum
memory usage per node. Consequently, only a few nodes in
a job may utilize the allocated memory resources fully, which
is even unlikely if jobs have severe memory imbalance. Fine-
grained resource allocation is challenging, if not impossible,
on the current architecture of tightly coupled resources on ex-
isting HPC systems. The long tail in the histogram (Figure 3)
indicates that the chances for a compute node to exhaust its
memory resource are low. For instance, memory utilization
above 55% occurs in less than 2% of the time. Note that the
unutilized memory increases procurement cost and operating
cost because DRAM consumes static power even when idle,
and the static power increases proportionally with the memory
capacity.
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Fig. 4: Illustration of two potential implementations of disag-
gregated memory on HPC systems. Rack 0 and 2 represent a
distributed architecture and a rack-level centralized architec-
ture, respectively.

III. DISAGGREGATED MEMORY IN HPC SYSTEMS

Generally speaking, a disaggregated memory system could
have distributed or centralized architecture. In a centralized
architecture (Rack 2 in Figure 4), abundant memory resources
are available on memory servers/nodes. Each compute node
has a small local memory. If a compute node needs more
than its local memory, it requests from the memory servers.
High-density and high-performance non-volatile memory tech-
nologies [10] are attractive for implementing memory servers.
The distributed architecture (Rack 0 of Figure 4) has no
dedicated memory nodes. Instead, each node may have a
moderate memory capacity. If a compute node exhausts its
local memory, it ’borrows’ memory from some other nodes.

Various software approaches have been proposed for ap-
plications to utilize disaggregated memory systems. Operating
system-based solutions [6], [7] typically require no application
modifications and swap in pages from remote memory to
local memory transparently. Hypervisor extensions [1] on
cloud support virtual machines to leverage remote memory.
However, HPC systems rarely co-locate jobs in one compute
node, unlike data centers and cloud. Also, most HPC systems
lack the support for changing the OS in each job allocation.
Therefore, in this work, we explore a user-space solution rather
than an OS-based solution for disaggregated memory systems
on HPC systems.

We envision disaggregated memory as an in-transit service
in the HPC environment, i.e., tasks launched in a job provides
the service to other tasks in the same job. This deployment
model works for both distributed and centralized implemen-
tation in Figure 4. In Rack 0, tasks on a node may borrow
memory from other nodes. In Rack 2, tasks on compute
nodes may request memory from tasks running on the memory
blade attached to the rack. We consider disaggregated memory
systems as a part of complex memory hierarchies, where a
node has fast but small local memory and large but slow remote
memory. The user would have the flexibility to select remote
data objects that might be partially migrated to memory nodes.

IV. A USER-SPACE REMOTE PAGING LIBRARY

In this work, we design a user-space remote paging library
called rMap to allow applications exploring disaggregated
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Fig. 5: An overview of rMap architecture.

memory. A compute node on a disaggregated memory system
has only a small local memory. The objective is to enable
memory-intensive workloads, whose memory footprint ex-
ceeds the local memory, to run on such a compute node as
if on a huge-memory node. When an application exhausts the
local memory on a node, rMap fetches memory pages on-
demand from a memory node/server and transparently swaps
into the local memory. Compared to global shared memory
systems like PGAS, no changes in the programming model
are required, ensuring the maximum reuse of existing efforts
in most HPC applications.

Figure 5 illustrates the library architecture, including client-
side and provider-side components. The client-side component
resides in application processes while the provider-side com-
ponent resides on memory nodes. An application may select
multiple data objects to be remote, i.e., remote data objects.
These data objects could be those that consume the most
memory footprint. rMap manages each remote data object as
a collection of equal-sized data chunks. When the application
accesses a data chunk not in the local memory, the client-
side dispatcher forwards requests to provider-side components,
which then transfer the required data chunks to the client-side.
If the local memory is exhausted, unused data chunks may be
evicted.

A. Remote Region Management

An application can define multiple remote data objects.
Each object, e.g., obj1 and obj2 in Figure 5, reserves a
virtual memory address space that could be larger the local
memory capacity. The virtual memory space assigned to each
remote data object is called a region. Each region is divided
into multiple chunks that is the basic unit for placement and
migration. The size of a chunk is a configurable parameter
incremental at the system page size. When a process accesses
a chunk that is not in the local memory, the access is blocked,
and rMap gets notified. Then, rMap looks up for the memory
server owning the chunk and requests for it. Once the fetched
chunk is placed into the local memory, the access is replayed.
One optimization to accelerate write access is to postpone
handshaking with the provider-side by directly allocating local
memory to back updated data chunks.

rMap distributes the local memory for backing each remote
data object based on demand. For instance, a smaller remote
data object could have more chunks in local memory if they are

accessed more frequently than a larger object. Local memory
on disaggregated memory is a scarce resource for caching
remote data objects. In rMap, the amount of local memory
that can be used for remote data objects is also a configurable
parameter. Different applications with different access charac-
teristics may not benefit equally from increased local memory.
Also, for multi-program workloads, each could be assured with
a certain amount of local memory to avoid interference. When
there is no local memory to accommodate newly accessed
chunks, rMap evicts chunks by LRU approximation to the
memory server.

B. Chunk Placement and Metadata

We design rMap for a multi-server multi-client deployment
model. Remote regions in one application process may be
backed by several memory nodes. One memory server could
provide memory resources to multiple clients, i.e., application
processes. This model naturally supports MPI applications –
each rank is a client in rMap. It is portable on both centralized
and distributed disaggregated memory, i.e., memory servers
can be distributed on one or multiple memory nodes. Another
benefit of the multi-server multi-client model is throughput,
where concurrent accesses to chunks in one data object could
have an aggregate bandwidth leveraging the high-performance
network on HPC systems if they are distributed on multiple
servers.

rMap maintains metadata for data chunks in the client-side
component to track their ownership on the memory servers.
As the data chunk is the basic unit for migration over the
network, data in one chunk must be stored one the same
memory node while different data chunks could be placed
onto different memory nodes. The distribution of data chunks
in one region can be either uniform or irregular over memory
servers. If equal-sized sub-region are placed on servers, chunk
lookup only requires simple offset calculation. However, a
uniform distribution assumes that each memory node has the
same amount of memory resources. In realistic scenarios, each
memory node may have different memory resources, and those
with more resources will hold more data chunks. Thus, for
irregular distribution, rMap uses a hash table to bookkeep
subregions, their start and end, and their owner servers.

C. Remote Request Pipeline

rMap separates communication with memory servers from
region management. A client-side dispatcher collects requests
for chunks from all regions into a central request pool. The dis-
patcher may explore opportunities to optimize these requests
before distributing them to a group of workers. A group of
lightweight workers shares the workload in the pool. These
workers achieve high concurrency and load balancing through
a dynamic scheduling scheme. Each worker handles a request
by setting up the communication protocol and local memory
for transferring data chunks. The coordination between the
dispatcher and workers is through a FIFO pipe for minimum
synchronization. Only the dispatcher update at the tail of the
pipe while workers update the head.
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We design the provider-side components to have the con-
trol of data transfer. Being near the data source, they can
coordinate and manage data more effectively. In contrast, the
client-side components only have information on their local
requests, lacking a global view as the provider-side. Therefore,
once a request is forwarded from the client-side, the worker is
blocked, yielding resources to other threads ready to progress.
The worker is wakened up when the requested data chunk
arrives. It then continues to finish up data copy and release
resources.

D. Implementation

We implement the proposed design in a C library1 based
on a user-space paging service [11]. rMap provides a minimal
set of API for existing HPC applications to define selected
remote data objects. Internally, rMap uses the userfaultfd [12]
system call to register the regions of these remote data objects.
When an accessed chunk is not in the local memory, the kernel
sends notifications, in the form of page faults, to the user-
space handler. The handler then determines the chunks that
need to be fetched and their owner servers. Before dispatching
the request, the handler may also evict unused chunks from
the local memory to ensure space for the newly requested
chunk. The workers are implemented using pthread. The
library supports applications to specify the level concurrency
of the workers.

The communication between client-side components and
provider-side components uses a remote procedure call (RPC)
library [13]. This communication layer supports multiple trans-
port protocols commonly supported on HPC systems, such
as RDMA, MPI, and TCP. When launching an application,
the server-side could pre-process remote data objects before
publishing their memory resources as a tuple of network
address and memory object id. The client-side component
then uses the published connection information to request for
remote memory.

V. EVALUATION

In this section, we emulate a disaggregated memory system
and perform sensitivity tests and case studies.

A. Emulation of a Disaggregated Memory System

We emulate a disaggregated memory system on an existing
HPC cluster called Flash. Each node has 256 GB RAM, two
Intel Xeon CPU E5-2670 processors on two sockets, and
each with 24 cores (two hardware threads). The cluster uses
Mellanox EDR InfiniBand interconnect. For emulation, each
run limits the maximum local RAM that can be used by
an application. If local RAM is exhausted, the library evicts
local pages by LRU replacement policy and fetches remote
pages from a ’memory node’ mimicked by another node. The
system runs the Red Hat Enterprise operating system with
GNU/Linux 3.1.0. The cluster runs the slurm job scheduler.
Each experimental run is deployed in a single job to mimic
the deployment model on HPC systems.

1https://github.com/LLNL/umap/tree/remote region
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Fig. 6: The performance of Stream-Add and Random-Lookup
benchmarks at increased chunk sizes at three configurations.

We use two synthetic benchmarks, i.e., stream and random,
for sensitivity study. The first benchmark performs streaming
access to each element in an array while the second one
randomly looks up elements. Our first case study uses a graph-
processing application derived from the Graph500 [14] that
performs a breadth-first search (BFS) on an input graph. The
second case study uses XSBench [15] from the ECP proxy
app suite. The selection of remote objects currently requires
programmers to change the allocation sites to the library APIs.
Several patterns would make a data object more suitable for
remote stores, e.g., large, long lifespan, read-intensive, and
data reuse. Automatic identification of remote data objects is
beyond the scope of this paper but discussed in [16]. The
applications are compiled with GCC 8.3.1 and OpenMPI/4.0.0,
and the geometric mean of the application-defined figure of
metric (FoM) is reported.

B. Sensitivity Study

We evaluate the impact of chunk size and access patterns of
remote data objects in two benchmarks. The first benchmark is
ported from the STREAM benchmark. It defines two arrays as
remote data objects and changes the chunk size from 4KB to
2MB. The experiments perform the stream kernels on one node
and dedicate remote memory on another node. We report the
measured performance in Figure 6a. In general, the streaming
access pattern achieves higher performance at larger chunk
sizes. Such remote data objects benefit little from data cached
in local memory unless the objects can be fully cached in local
memory. Instead, the most performance benefit comes from
prefetching from remote memory to local memory, which is
equivalent to increasing chunk sizes. Therefore, we observe
higher throughput at larger chunk sizes. When the chunk
size is too large to have enough computation to overlap the
data transfer time, performance decreases, i.e., 2MB chunks
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Fig. 7: The aggregate (top) and individual (bottom) perfor-
mance at increased processes on 1, 2, 4 memory nodes.

achieved lower throughput than 1MB chunks in Figure 6a. The
threading configurations start impacting performance at larger
chunk sizes (64KB and above), and using fewer threads per
process (4T in the test) improves performance significantly.

The random lookup benchmark in Figure 6b reports higher
performance at smaller chunk sizes. This benchmark performs
one million random lookups on a remote data object. Random
access features low data reuse in the local memory as the
data chunks fetched into the local memory may not be
reused. Also, prefetching data into the local memory only
detriment the performance because each lookup only accesses
a small fraction of a data chunk. Therefore, a large chunk has
more wasted data movement than a small chunk. We observe
the peak performance at the smallest chunk size. Like the
stream benchmark, the threading configurations start showing
performance impact at larger chunk sizes (16KB and above).
However, using 4T and 8T has less performance difference
than that of the stream benchmark.

We evaluate the impact of network complexity by scaling
up the number of processes and using different numbers of
memory nodes. Figure 7a and 7b report the aggregate through-
put and Figure 7c and 7d report the individual throughput. In
general, the aggregate performance scales up as the number of
processes increases while the number of memory nodes deter-
mines the peak throughput. For instance, the peak throughput
at four memory nodes is about four times throughput at one
memory node in both benchmarks. Also, random access is
more sensitive to the increased network complexity, i.e., at
four memory nodes, its performance drops considerably at the
largest number of processes. This performance degradation is
likely caused by network traffic contention.

Applications that exhibit random access may benefit from
throughput scaling on disaggregated memory systems. Fig-
ure 7b and 7d show that the aggregate throughput contin-

ues scaling up to 32 processes even though the individual
throughput starts decreasing from 16 processes. In contrast,
the aggregate throughput of the stream benchmark ( Figure 7a
and 7c) stops scaling at 20 processes, while the individual
throughput start decreasing at 16 processes.

C. Case Study I: Graph Processing

The first case study uses a data-analytics workload that
performs breadth-first-search on a graph. Graph processing
plays a vital role in social networks, bioinformatics, and data
mining. The most memory-intensive data objects in graph
applications are often related to the edges and vertices data
structures. Other data objects often have relatively small sizes
and short lifespans. We changed the allocation routine of
the graph and edge structures to the rMap APIs. Four input
graphs, i.e., scale 27, 28, 29, and 30, generated from a
Kronecker generator as specified in Graph500 [14], are used
for evaluation. These graphs have 4.3 to 34 billion edges and
up to one billion vertices.

The disaggregated implementation enables a new processing
paradigm that is different from the traditional distributed-
memory implementation. Each process can perform an inde-
pendent BFS search on the graph. In contrast, in the distributed
implementation, all processes collectively work one search.
For instance, the scale 30 graph cannot fit into a single node.
Without the disaggregated implementation, a conventional
distributed implementation would require at least two nodes
for each search. One advantage of this execution model is to be
able to initiate multiple different searches and early terminate
if one search finishes fulfilling the requirement, e.g., model
parallel.

The disaggregated implementation achieves throughput scal-
ing as the number of processes increases. The experiment uses
two memory nodes and increases the number of processes
performing BFS from one to eight nodes. Figure 8 reports the
aggregate throughput. The throughput scales up to six nodes,
reaching different peak throughput on different inputs. Before
the aggregate throughput stabilizes, the increased throughput
indicates that the memory servers’ peak capability has not been
exhausted. Note that our emulation is based on the current
hardware. Specialized hardware support for memory disaggre-
gation will likely enable even higher aggergate performance.

One question in designing disaggregate memory is to de-
termine cost-effective local memory capacity. We evaluate the
impact of local memory by sweeping seven configurations of
local memory capacity in Figure 10 that sets up 16 GB to 64
GB local memory. This experiment performs BFS search on
four nodes and uses two memory nodes. We find that increas-
ing the local memory capacity not always bring performance
improvement. The workload is highly data-driven – some
dense regions in the graph may have high access intensity
while other sparse regions may have low access intensity. With
offline profiling tools to identify the dense and sparse regions
of a graph, our user-space solution could support data-aware
optimization that explicitly pins dense regions in the local
memory and reduce the capacity of local memory.
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Fig. 8: The aggregate throughput of BFS on four input graphs (s27-s30) using increased processes (from one to eight nodes).
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Fig. 9: The aggregate lookup rates in XSBench on four nuclide grids using increased processes (from one to eight nodes).
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Fig. 10: The performance of BFS at different configurations
of the local memory (LM) capacity.
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Fig. 11: The performance of XSBench at different configura-
tions of the local memory capacity using four nuclide grids.

D. Case Study II: Monte Carlo Simulation

XSBench is a proxy app of the Monte Carlo neutronics
application OpenMC. The main simulation phase performs
lookups of the macroscopic neutron cross-sections. In this
case study, we ported the MPI+OpenMP implementation to
disaggregated memory systems. We select the nuclide grids
and energy grids as the remote data objects by changing their
allocation sites to rMap APIs. These two data objects consume
more than 90% of the memory footprint. We evaluate 22K to
180K grid points per nuclide for 355 nuclides, and report the
aggregate lookup rates in Figure 9.

The disaggregated performance of XSBench scales up al-
most linearly as the number of nodes increases (Figure 9). The

processes that perform the cross-section calculation are mostly
data-parallel without inter-process communication. Also, the
remote data objects are read-intensive, imposing minimal
overhead for consistency semantics. Therefore, using more
processes scales up the aggregate performance until reaching
the memory nodes’ peak capacity.

We noticed that the aggregate throughput decreases across
the input problems when the size of grid points increases
from 22K to 180K in Figure 9. From the profiling results,
we find that the nuclide grids have relatively small reuse
distance. The energy grids have about 99% random accesses
and only about 1% streaming-like accesses. Therefore, the data
reuse in energy grids is low. Unlike BFS, which has data-
dependent access to the remote data objects, random access
to the energy grids has a uniform distribution. Therefore, the
probability of an accessed chunk of the energy grids in the
local memory is proportional to the ratio between the local
memory size and the remote object size. In Figure 9, the
size of local memory is constant, while the size of remote
objects increases from 22K to 180K grid points. Therefore,
we observe a decreasing aggregate throughput across the four
input problems. For the same reason, when sweeping seven
configurations of the local memory capacity (Figure 11), the
performance always improves when the size of local memory
increases. Unlike BFS, applications like XSbench generally
benefit from increased local memory.

VI. RELATED WORK

Various hardware designs [5], [17]–[21] for disaggregated
systems have been proposed. The Machine from HPE [5]
uses optical networking and fabric-attached memory to pro-
vide a globally accessible memory pool. Previous Mellanox
nbdX [18] and currently NVMe over Fabrics [17] provides
network-attached block device as disaggregated storage. Sev-
eral data centers have employed disaggregated architecture at
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production clusters, such as Intel’s Rack-scale architecture [19]
and Facebook’s Disaggregated Rack [20]. Our study considers
HPC environments and proposes a deployment model portable
for potential architecture of disaggregate memory systems.

Software approaches for utilizing disaggregated memory
systems include OS extension, hypervisor, and libraries. Lim
et al. [1] identifies new replacement policies for disaggregated
memory and explored the Memcached system. Gao et al. [2]
evaluates the requirements on network bandwidth, latency,
and protocols to support acceptable application performance.
FaRM [22] leverages communication primitives in RDMA to
reduce latency in accessing remote memory and propose a
transactional interface in applications. Infiniswap [7] provides
a kernel-based solution to enable remote paging transparently
without application modifications. Hailstorm [4] developed
a distributed LSM database deployed on a network-attached
storage pool to mitigate load imbalance from tasks. Zhu et
al. [23] explored storage disaggregation at the user-level by
leverage NVMe over fabric for machine learning workloads.
Allcock et al. [3] evaluates a Kove XPD memory appliance
that is attached to the network and ported memory-intensive
applications to their specific APIs. Many of these works target
data centers and clouds environment and commercial work-
loads. Our work addresses the constraints in HPC environment,
targets to minimize programming efforts, and supports user
control and flexibility at user-space.

VII. CONCLUSIONS

Current HPC systems are composed of tightly coupled
resources in nodes. Recently, disaggregated architecture starts
emerging to enable fine-grained resource allocation. In this
study, we performed a large-scale study to quantify the mem-
ory utilization on four production HPC clusters. We provide
a user-space library for applications to explore disaggregated
memory in HPC environments. Based on the library, we
emulated a disaggregated memory system. Our experiments
evaluated the performance impact of access patterns, migration
granularity, network connectivity, and local memory size on
application throughput and highlight design and optimization
insights in two case studies.
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